

Genome Editing to Increase Seed Oil in Camelina

Kristi Snell, PhD
CSO and VP of Research
www.yield10bio.com

CANOLA INNOVATION DAY

December 2021

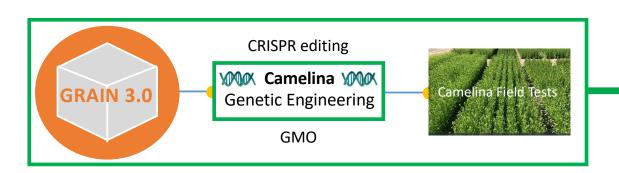
Safe Harbor Statement*

The statements made by Yield10 Bioscience, Inc. (the "Company," "we," "our" or "us") herein regarding the Company and its business may be forward-looking in nature and are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements describe the Company's future plans, projections, strategies and expectations, including statements regarding future results of operations and financial position, business strategy, prospective products and technologies, expectations related to research and development activities, timing for receiving and reporting results of field tests and likelihood of success, and objectives of the Company for the future, and are based on certain assumptions and involve a number of risks and uncertainties, many of which are beyond the control of the Company, including, but not limited to, the risks detailed in the Company's Annual Report on Form 10-K for the year ended December 31, 2020 and other reports filed by the Company with the Securities and Exchange Commission (the "SEC"). Forward-looking statements include all statements which are not historical facts and can generally be identified by terms such as anticipates, believes, could, estimates, intends, may, plans, projects, should, will, would, or the negative of those terms and similar expressions.

Because forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified and may be beyond the Company's control, you should not rely on these statements as predictions of future events. Actual results could differ materially from those projected due to our history of losses, lack of market acceptance of our products and technologies, the complexity of technology development and relevant regulatory processes, market competition, changes in the local and national economies, and various other factors. All forward-looking statements contained herein speak only as of the date hereof, and the Company undertakes no obligation to update any forward-looking statements, whether to reflect new information, events or circumstances after the date hereof or otherwise, except as may be required by law.

Yield10's Crop Innovation Platform

Yield10 uses its "Trait Factory" to increase photosynthesis in crops and fix more CO₂ from air


Fixed carbon is targeted to:

- Increase seed yield and oil
- High value seed products

Sequestered Carbon

Yield10's Trait Factory and Business Models

From Crop Science to \$200 Billion Total Addressable Market (TAM)

Technology Platform - "Trait Factory"1

Camelina Seed Products

1. Feedstock Oil (Biofuel)

Omega-3 Oil (EPA+DHA)

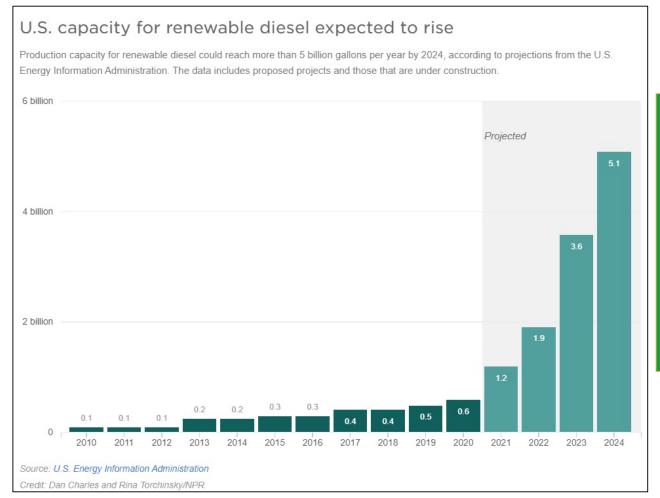
PHA Bioplastics

Trait Licensing²

¹21 Patent Families Pending

²Research License Agreements, 3rd party R&D to create option value for Yield10 gene traits on over 400 million acres of major crops (soybean, corn, canola, etc.)

Oilseed Crop Choice: Camelina sativa

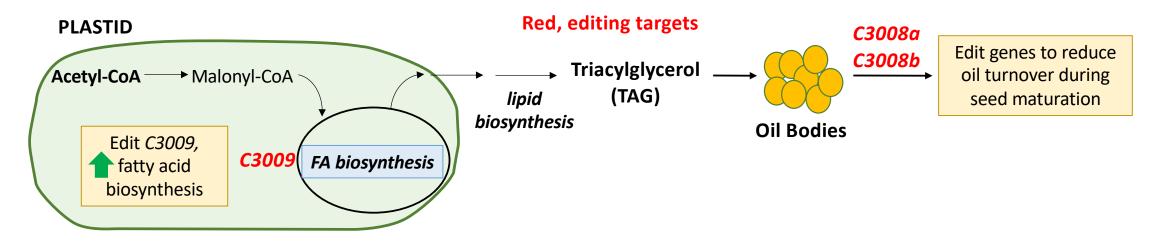

- Good platform for specialty/niche crops for high value products
 - Specialty oils, biopolymers, products in food and animal feed
- Seed oil levels typically 35-40% of seed weight
- Does not outcross with Canola
- Both spring and winter varieties of Camelina available
 - Winter varieties possible cover crop to remove excess nitrogen from prior corn/soybean growth
- Camelina is currently planted on a very small acreage
 - Needs improvements

Yield10 Camelina Review: *Camelina sativa*, an oilseed at the nexus between model system and commercial crop. Malik et al., Plant Cell Rep., 2018

Opportunities and Challenges in Renewable Diesel

Improvements to Camelina

Transform into high revenue, high yield, low carbon-index crop, securing acreage for renewable diesel feedstock


Target:

- High yield/oil spring & winter Camelina
- Herbicide tolerance
- Disease resistance

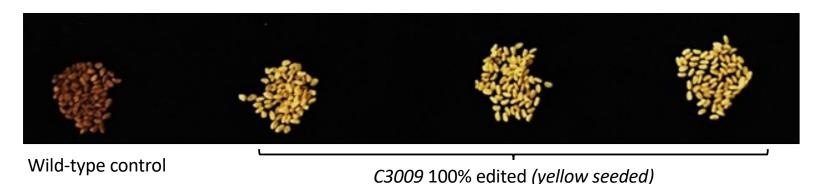
Editing Combinations of Known Genes

Gene combinations to increase oil biosynthesis and prevent oil turnover¹

1. C3009 - transcription factor target to upregulate fatty acid biosynthesis

— regulation of embryo fatty acid biosynthetic genes, + regulation of genes responsible for pigment in seed coat

2. C3008a and C3008b - gene targets to reduce oil turnover during seed maturation


C3008a and C3008b, oil body associated lipases

Multiplex Genome Editing of Three Genes in Camelina

Editing of lipase genes (C3008a, C3008b) and transcription factor gene (C3009)

- Identified best Camelina orthologs to Arabidopsis genes based on homology
- Simultaneous editing of 9 genes (3 target genes present in 3 copies each) using CRISPR
- Lines with different combinations of edits obtained and characterized
 - Very difficult to get all 9 gene copies edited in same line, only one line obtained with all 9 genes edited
- Fully edited C3009 gene, loss of pigmentation in seed coat
 - Unique distinction to track edited seed

Isolation of Line E3902 with Higher Oil Content

Trait performance in greenhouse

• E3902, **9% increase** in bulk seed oil content and **5% increase** in total oil produced per plant

	Gene Targets			% Increase, oil	% Increase,	% Increase, seed	% Increase,	% Increase, total
	C3008b	C3008a	C3009	per individual seed (mgs)	individual seed weight (mgs)	oil content (% of seed weight)	number of seeds per plant	oil produced per plant
E3902	x x _	XXX	ххх	+ 12	+ 1	+ 9	-5.2	+ 5
Line 2	ххх	x x _	ххх	+ 38	+ 17	+ 5	- 19	- 15
Line 3	ххх	XXX	ххх	+ 34	+ 9	+ 6	- 29	- 26

X = edited allele Patent pending

- Observed tradeoff between seed oil content with seed number.
 - Lines 2 and 3 have higher increases in "oil per individual seed" and "individual seed weight" and fewer seeds per plant
 - Suggests significant shift in carbon partitioning to oil
- Opportunity exists to further engineer edited lines to increase seed yield

2019 Field Tests of Edited Lines

Received 2018 confirmation that USDA-APHIS does not consider lines to be regulated¹

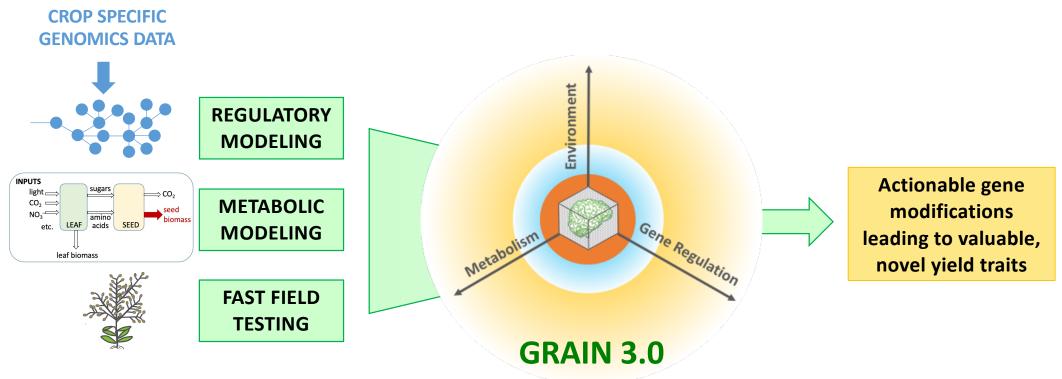
2019 field test of edited lines at site in US

(randomized complete block design, lines replicated 6 times)

- E3902 oil trait stable in 2019 & 2020 field trials
- 2021 field data becoming available and looking promising
- Scaling up E3902 in this year's contraseason to meet demand for renewable diesel

2019 Field Data for E3902

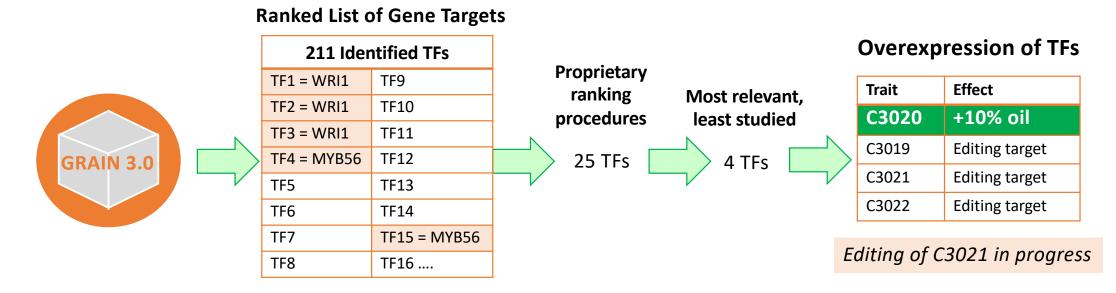
% Increase, oil per individual seed (mgs)	% Increase, individual seed weight (mgs)	% Increase, seed yield (kg seed per hectare)	% Increase, seed oil content (% of seed weight)	% Increase, number of seeds harvested	% Increase, total oil produced per hectare
11.8*	8.7*	9.7	4.7*	- 3.7	15.0


^{*}statistically significant (t-test)

Patent pending

GRAIN 3.0: Identify Unique Gene Combinations for a Trait

How do you move beyond known genes and identify new combinations?



Metabolic information can inform genomic decisions

GRAIN 3.0: Identification of High Oil C3020 Trait

Used GRAIN to search for transcription factors (TFs) to increase seed oil content in Camelina

- Ranked list of TFs obtained
- Known TFs that impact oil and/or seed yield observed in top spots validating approach
- Many uncharacterized genes identified, IP white space
- Overexpression of C3020 increases seed oil content by 10%
- Next steps: combinations of edits, combinations with E3902

Why is a Prioritized Short-List of High-Value Targets Better?

Illustrative Example – Resources to test combinations of 3 gene changes for a trait

Test all 3 gene combinations with **1,000** interesting gene targets (from **genomics**)

166,167,000 combinations of **3** genes

Identifying successful gene combinations is impossible with many low-value targets

Test all 3 gene combinations with **10** interesting gene targets (from **GRAIN**)

120 combinations of 3 genes

Summary

For oilseed crops: harvest value is driven by oil/acre = seed yield/acre x seed oil content

Need to increase Camelina seed yield and/or oil content to maximize oil yields per acre

Line E3902 with multiple genome edits has increased seed oil content in field

- 4.7% increase in seed oil content in 2019 field trials, 5.6% in 2020.
- 2021 trial under analysis and looking promising
- F3902 has a differentiated seed color
- Scaling up E3902 in 2021 contraseason to meet demand for renewable diesel

Yield10 using GRAIN to identify combinations of gene targets for increased oil/seed yield

- C3020 overexpression target increased oil by 10% (greenhouse)
- Editing C3021 target underway
- Plan to combine traits with E3902

Potential to combine E3902 edits with oil composition traits (high oleic, omega oil)

Have 5 to 6 additional disruptive trait targets that are in development

Contact info: snell@yield10bio.com

Sustainable Growth Starts with a Seed